Tunneling for a class of Difference Operators: Complete Asymptotics

20 Jun 2017  ·  Klein Markus, Rosenberger Elke ·

We analyze a general class of difference operators $H_\varepsilon = T_\varepsilon + V_\varepsilon$ on $\ell^2(\varepsilon\mathbf{Z}^d)$, where $V_\varepsilon$ is a multi-well potential and $\varepsilon$ is a small parameter. We derive full asymptotic expansions of the prefactor of the exponentially small eigenvalue splitting due to interactions between two "wells" (minima) of the potential energy, i.e., for the discrete tunneling effect... We treat both the case where there is a single minimal geodesic (with respect to the natural Finsler metric induced by the leading symbol $h_0(x,\xi)$ of $H_\varepsilon$) connecting the two minima and the case where the minimal geodesics form an $\ell+1$ dimensional manifold, $\ell\geq 1$. These results on the tunneling problem are as sharp as the classical results for the Schr\"odinger operator in \cite{hesjo}. Technically, our approach is pseudodifferential and we adapt techniques from \cite{hesjo2} and \cite{hepar} to our discrete setting. read more

PDF Abstract
No code implementations yet. Submit your code now


Spectral Theory