Triangular Matrix Categories II: Recollements and functorially finite subcategories

10 Mar 2019  ·  León-Galeana Alicia, Ortiz-Morales Martín, Vargas Valente Santiago ·

In this paper we continue the study of triangular matrix categories $\mathbf{\Lambda}=\left[ \begin{smallmatrix} \mathcal{T} & 0 \\ M & \mathcal{U} \end{smallmatrix}\right]$ initiated in [21]. First, given an additive category $\mathcal{C}$ and an ideal $\mathcal{I}_{\mathcal{B}}$ in $\mathcal{C}$, we prove a well known result that there is a canonical recollement $\xymatrix{\mathrm{Mod}(\mathcal{C}/\mathcal{I}_{\mathcal{B}})\ar[r]_{} & \mathrm{Mod}(\mathcal{C})\ar[r]_{}\ar@<-1ex>[l]_{}\ar@<1ex>[l]_{} & \mathrm{Mod}(\mathcal{B})\ar@<-1ex>[l]_{}\ar@<1ex>[l]_{}}$. We show that given a recollement between functor categories we can induce a new recollement between triangular matrix categories, this is a generalization of a result given by Chen and Zheng in [11, theorem 4.4]. In the case of dualizing $K$-varieties we can restrict the recollement we obtained to the categories of finitely presented functors. Given a dualizing variety $\mathcal{C}$, we describe the maps category of $\mathrm{mod}(\mathcal{C})$ as modules over a triangular matrix category and we study its Auslander-Reiten sequences and contravariantly finite subcategories, in particular we generalize several results from [24]. Finally, we prove a generalization of a result due to {Smal\o} ([35, Theorem 2.1]), which give us a way of construct functorially finite subcategories in the category $\mathrm{Mod}\Big(\left[ \begin{smallmatrix} \mathcal{T} & 0 \\ M & \mathcal{U} \end{smallmatrix}\right]\Big)$ from those of $\mathrm{Mod}(\mathcal{T})$ and $\mathrm{Mod}(\mathcal{U})$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Category Theory