The Gromov-Hausdorff distance between ultrametric spaces: its structure and computation

7 Oct 2021  ·  Facundo Mémoli, Zane Smith, Zhengchao Wan ·

The Gromov-Hausdorff distance ($d_\mathrm{GH}$) provides a natural way of quantifying the dissimilarity between two given metric spaces. It is known that computing $d_\mathrm{GH}$ between two finite metric spaces is NP-hard, even in the case of finite ultrametric spaces which are highly structured metric spaces in the sense that they satisfy the so-called \emph{strong triangle inequality}... Ultrametric spaces naturally arise in many applications such as hierarchical clustering, phylogenetics, genomics, and even linguistics. By exploiting the special structures of ultrametric spaces, (1) we identify a one parameter family $\{d_\mathrm{GH}^{(p)}\}_{p\in[1,\infty]}$ of distances defined in a flavor similar to the Gromov-Hausdorff distance on the collection of finite ultrametric spaces, and in particular $d_\mathrm{GH}^{(1)} =d_\mathrm{GH}$. The extreme case when $p=\infty$, which we also denote by $u_\mathrm{GH}$, turns out to be an ultrametric on the collection of ultrametric spaces. Whereas for all $p\in[1,\infty)$, $d_\mathrm{GH}^{(p)}$ yields NP-hard problems, we prove that surprisingly $u_\mathrm{GH}$ can be computed in polynomial time. The proof is based on a structural theorem for $u_\mathrm{GH}$ established in this paper; (2) inspired by the structural theorem for $u_\mathrm{GH}$, and by carefully leveraging properties of ultrametric spaces, we also establish a structural theorem for $d_\mathrm{GH}$ when restricted to ultrametric spaces. This structural theorem allows us to identify special families of ultrametric spaces on which $d_\mathrm{GH}$ is computationally tractable. These families are determined by properties related to the doubling constant of metric space. Based on these families, we devise a fixed-parameter tractable (FPT) algorithm for computing the exact value of $d_\mathrm{GH}$ between ultrametric spaces. We believe ours is the first such algorithm to be identified. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Metric Geometry Computational Geometry