Stochastic Restricted Biased Estimators in misspecified regression model with incomplete prior information

28 Feb 2018  ·  Kayanan Manickavasagar, Wijekoon Pushpakanthie ·

In this article, the analysis of misspecification was extended to the recently introduced stochastic restricted biased estimators when multicollinearity exists among the explanatory variables. The Stochastic Restricted Ridge Estimator (SRRE), Stochastic Restricted Almost Unbiased Ridge Estimator (SRAURE), Stochastic Restricted Liu Estimator (SRLE), Stochastic Restricted Almost Unbiased Liu Estimator (SRAULE), Stochastic Restricted Principal Component Regression Estimator (SRPCR), Stochastic Restricted r-k class estimator (SRrk) and Stochastic Restricted r-d class estimator (SRrd) were examined in the misspecified regression model due to missing relevant explanatory variables when incomplete prior information of the regression coefficients is available. Further, the superiority conditions between estimators and their respective predictors were obtained in the mean square error matrix (MSEM) sense. Finally, a numerical example and a Monte Carlo simulation study were used to illustrate the theoretical findings.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Statistics Theory Methodology Statistics Theory