Quantization of the Laplacian operator on vector bundles I

14 May 2015  ·  Keller Julien, Meyer Julien, Seyyedali Reza ·

Let $(E,h)$ be a holomorphic Hermitian vector bundle over a polarized manifold. We provide a canonical quantization of the Laplacian operator acting on sections of the bundle of Hermitian endomorphisms of $E$... If $E$ is simple we obtain an approximation of the eigenvalues and eigenspaces of the Laplacian. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • DIFFERENTIAL GEOMETRY
  • MATHEMATICAL PHYSICS
  • COMPLEX VARIABLES
  • MATHEMATICAL PHYSICS

Categories


Differential Geometry Mathematical Physics Complex Variables Mathematical Physics