Let $a>0,b>0$ and $V(x)\geq0$ be a coercive function in $\mathbb R^2$. We study the following constrained minimization problem on a suitable weighted Sobolev space $\mathcal{H}$: \begin{equation*} e_{a}(b):=\inf\left\{E_{a}^{b}(u):u\in\mathcal{H}\ \mbox{and}\ \int_{\mathbb R^{2}}|u|^{2}dx=1\right\}, \end{equation*} where $E_{a}^{b}(u)$ is a Kirchhoff type energy functional defined on $\mathcal{H}$ by \begin{equation*} E_{a}^{b}(u)=\frac{1}{2}\int_{\mathbb R^{2}}[|\nabla u|^{2}+V(x)u^{2}]dx+\frac{b}{4}\left(\int_{\mathbb R^{2}}|\nabla u|^{2}dx\right)^{2}-\frac{a}{4}\int_{\mathbb R^{2}}|u|^{4}dx... (read more)

PDF- FUNCTIONAL ANALYSIS

- ANALYSIS OF PDES