Packing Disks by Flipping and Flowing

27 May 2020 Connelly Robert Gortler Steven J.

We provide a new type of proof for the Koebe-Andreev-Thurston (KAT) planar circle packing theorem based on combinatorial edge-flips. In particular, we show that starting from a disk packing with a maximal planar contact graph $G$, one can remove any flippable edge $e^-$ of this graph and then continuously flow the disks in the plane, such that at the end of the flow, one obtains a new disk packing whose contact graph is the graph resulting from flipping the edge $e^-$ in $G$... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • METRIC GEOMETRY
  • COMBINATORICS