On the regularity of weak solutions of the Boussinesq equations in Besov spaces Dedicated to Enrique Zuazua on the occasion of his sixtieth birthday

21 May 2020  ·  Barbagallo A., Gala S., Ragusa M. A., Thera M. ·

The main issue addressed in this paper concerns an extension of a result by Z. Zhang who proved, in the context of the homogeneous Besov space $\dot{B}_{\infty ,\infty }^{-1}(\mathbb{R}% ^{3})$, that, if the solution of the Boussinesq equation (\ref% {eq1.1}) below (starting with an initial data in $H^{2}$) is such that $% (\nabla u,\nabla \theta )\in L^{2}\left( 0,T;\dot{B}_{\infty ,\infty }^{-1}(% \mathbb{R}^{3})\right)$, then the solution remains smooth forever after $T$. In this contribution, we prove the same result for weak solutions just by assuming the condition on the velocity $u$ and not on the temperature $\theta$...

PDF Abstract
No code implementations yet. Submit your code now


Analysis of PDEs