On a class of weighted p-Laplace equation with singular nonlinearity

14 Dec 2019 Garain P. Mukherjee T.

This article deals with the existence of the following quasilinear degenerate singular elliptic equation \begin{equation*} (P_\la)\left\{ \begin{split} -\text{div}(w(x)|\nabla u|^{p-2}\nabla u) &= g_{\la}(u),\;u>0\; \text{in}\; \Om, u&=0 \; \text{on}\; \partial \Om, \end{split}\right. \end{equation*} where $ \Om \subset \mb R^n$ is a smooth bounded domain, $n\geq 3$, $\la>0$, $p>1$ and $w$ is a Muckenhoupt weight... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • ANALYSIS OF PDES