Metric Lie groups admitting dilations

10 Jun 2019 Donne Enrico Le Golo Sebastiano Nicolussi

We consider left-invariant distances $d$ on a Lie group $G$ with the property that there exists a multiplicative one-parameter group of Lie automorphisms $(0, \infty)\rightarrow\mathtt{Aut}(G)$, $\lambda\mapsto\delta_\lambda$, so that $ d(\delta_\lambda x,\delta_\lambda y) = \lambda d(x,y)$, for all $x,y\in G$ and all $\lambda>0$. First, we show that all such distances are admissible, that is, they induce the manifold topology... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • METRIC GEOMETRY
  • GROUP THEORY