Invariant measures for horospherical actions and Anosov groups

12 Aug 2020  ·  Minju Lee, Hee Oh ·

Let $\Gamma$ be a Zariski dense Anosov subgroup (with respect to a minimal parabolic subgroup) of a connected semisimple real algebraic group $G$. For a maximal horospherical subgroup $N$ of $G$, we show that the space of all non-trivial $NM$-invariant ergodic and $A$-quasi-invariant Radon measures on $\Gamma \backslash G$, up to proportionality, is homeomorphic to ${\mathbb R}^{\text{rank}\,G-1}$, where $A$ is a maximal real split torus and $M$ is a maximal compact subgroup which normalizes $N$... One of the main ingredients is to establish the $NM$-ergodicity of all Burger-Roblin measures. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Dynamical Systems Geometric Topology