Hyperbolic groups with boundary an n-dimensional Sierpinski space

14 May 2015 Lafont Jean-François Tshishiku Bena

For n>6, we show that if G is a torsion-free hyperbolic group whose visual boundary is an (n-2)-dimensional Sierpinski space, then G=\pi_1(W) for some aspherical n-manifold W with nonempty boundary. Concerning the converse, we construct, for each n>3, examples of aspherical manifolds with boundary, whose fundamental group G is hyperbolic, but with visual boundary not homeomorphic to an (n-2)-dimensional Sierpinski space...

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • GEOMETRIC TOPOLOGY
  • GROUP THEORY