Let $\Omega \subset \mathbb{R}^N$ ($N \geq 3$) be a $C^2$ bounded domain and $K \subset \Omega$ be a compact, $C^2$ submanifold in $\mathbb{R}^N$ without boundary, of dimension $k$ with $0\leq k < N-2$. We consider the Schr\"odinger operator $L_\mu = \Delta + \mu d_K^{-2}$ in $\Omega \setminus K$, where $d_K(x) = \text{dist}(x,K)$... (read more)
PDF