Gibbs measures on permutations over one-dimensional discrete point sets

17 Mar 2015  ·  Biskup Marek, Richthammer Thomas ·

We consider Gibbs distributions on permutations of a locally finite infinite set $X\subset\mathbb{R}$, where a permutation $\sigma$ of $X$ is assigned (formal) energy $\sum_{x\in X}V(\sigma(x)-x)$. This is motivated by Feynman's path representation of the quantum Bose gas; the choice $X:=\mathbb{Z}$ and $V(x):=\alpha x^2$ is of principal interest... Under suitable regularity conditions on the set $X$ and the potential $V$, we establish existence and a full classification of the infinite-volume Gibbs measures for this problem, including a result on the number of infinite cycles of typical permutations. Unlike earlier results, our conclusions are not limited to small densities and/or high temperatures. read more

PDF Abstract
No code implementations yet. Submit your code now


Probability Mathematical Physics Combinatorics Mathematical Physics