Finite-dimensional modules of the universal Askey--Wilson algebra and DAHA of type $(C_1^\vee,C_1)$

12 Mar 2020  ·  Hau-Wen Huang ·

Assume that $\mathbb F$ is an algebraically closed field and let $q$ denote a nonzero scalar in $\mathbb F$ that is not a root of unity. The universal Askey--Wilson algebra $\triangle_q$ is a unital associative $\mathbb F$-algebra defined by generators and relations. The generators are $A,B, C$ and the relations state that each of $$ A+\frac{q BC-q^{-1} CB}{q^2-q^{-2}}, \qquad B+\frac{q CA-q^{-1} AC}{q^2-q^{-2}}, \qquad C+\frac{q AB-q^{-1} BA}{q^2-q^{-2}} $$ is central in $\triangle_q$. The universal DAHA (double affine Hecke algebra) $\mathfrak H_q$ of type $(C_1^\vee,C_1)$ is a unital associative $\mathbb F$-algebra generated by $\{t_i^{\pm 1}\}_{i=0}^3$ and the relations state that \begin{gather*} t_it_i^{-1}=t_i^{-1} t_i=1 \quad \hbox{for all $i=0,1,2,3$}; \\ \hbox{$t_i+t_i^{-1}$ is central} \quad \hbox{for all $i=0,1,2,3$}; \\ t_0t_1t_2t_3=q^{-1}. \end{gather*} Each $\mathfrak H_q$-module is a $\triangle_q$-module by pulling back via the injection $\triangle_q\to \mathfrak H_q$ given by \begin{eqnarray*} A &\mapsto & t_1 t_0+(t_1 t_0)^{-1}, \\ B &\mapsto & t_3 t_0+(t_3 t_0)^{-1}, \\ C &\mapsto & t_2 t_0+(t_2 t_0)^{-1}. \end{eqnarray*} We classify the lattices of $\triangle_q$-submodules of finite-dimensional irreducible $\mathfrak H_q$-modules. As a consequence, for any finite-dimensional irreducible $\mathfrak H_q$-module $V$, the $\triangle_q$-module $V$ is completely reducible if and only if $t_0$ is diagonalizable on $V$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Representation Theory Combinatorics Quantum Algebra 16G30, 33D45, 33D80, 81R10, 81R12