Enhanced energy harvesting using time-delayed feedback control from random rotational environment

16 Mar 2020  ·  Zhang Yanxia, Jin Yanfei, Li Yang ·

Motivated by improving performance of a bi-stable vibration energy harvester (VEH) from the viewpoint of vibration control, the time-delayed feedback control of displacement and velocity are constructively proposed into an electromechanical coupled VEH mounted on a rotational automobile tire, which is subject to colored noise and the periodic excitation. Using the improved stochastic averaging procedure based on energy-dependent frequency, the expressions of stationary probability density (SPD) and signal-to-noise ratio (SNR) are obtained analytically. Then, the efficiency of time-delayed feedback control on the stationary response and stochastic resonance (SR) for the delay-controlled VEH is explored in detail theoretically. Results show that both noise-induced SR and delay-induced SR can occur. Time delay is able to not only enhance the SR behavior but also weaken it. Furthermore, a larger negative feedback gain of displacement and a larger positive feedback gain of velocity are more beneficial for VEH. Interesting finding is that the optimal combination of time delay in maximizing the harvested performance, such as the harvest power, the output RMS voltage and the power conversion efficiency, is almost perfectly consistent with that in maximizing SNR. Compared with the uncontrolled VEH, the delay-controlled VEH can achieve certain desirable optimization in harvesting energy by choosing the appropriate combination of time delays and feedback gains.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optimization and Control Dynamical Systems