Endomorphisms of ordinary superelliptic jacobians

14 Feb 2020 Zarhin Yuri G.

Let $K$ be a field of prime characteristic $p$, $n>4 $ an integer, $f(x)$ an irreducible polynomial over $K$ of degree $n$, whose Galois group is either the full symmetric group $S_n$ or the alternating group $A_n$. Let $l$ be an odd prime different from $p$, $Z[\zeta_l]$ the ring of integers in the $l$th cyclotomic field, $C_{f,l}:y^l=f(x)$ the corresponding superelliptic curve and $J(C_{f,l})$ its jacobian... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • ALGEBRAIC GEOMETRY