Dynamics of a spatially homogeneous Vicsek model for oriented particles on the plane

31 Jul 2016  ·  Kang Moon-Jin, Morales Javier ·

We consider a spatially homogeneous Kolmogorov-Vicsek model in two dimensions, which describes the alignment dynamics of self-driven stochastic particles that move on the plane at a constant speed, under space-homogeneity. In \cite{F-K-M}, Alessio Figalli and the authors have shown the existence of global weak solutions for this two-dimensional model... However, no time-asymptotic behavior has been obtained for the two-dimensional case, due to the failure of the celebrated Bakery and Emery condition for the logarithmic Sobolev inequality. We prove exponential convergence (with quantitative rate) of the weak solutions towards a Fisher-von Mises distribution, using a new condition for the logarithmic Sobolev inequality. read more

PDF Abstract
No code implementations yet. Submit your code now


Analysis of PDEs