Given a connected, oriented, complete, finite area hyperbolic surface $X$ of genus $g$ with $n$ punctures, Mirzakhani showed that the number of multi-geodesics on $X$ of total hyperbolic length $\leq L$ in the mapping class group orbit of a given simple or filling closed multi-curve is asymptotic as $L \to \infty$ to a polynomial in $L$ of degree $6g-6+2n$. We establish asymptotics of the same kind for countings of multi-geodesics in mapping class group orbits of simple or filling closed multi-curves that keep track of the hyperbolic lengths of individual components, proving and generalizing a conjecture of Wolpert... (read more)
PDF