Computable Centering Methods for Spiraling Algorithms and their Duals, with Motivations from the theory of Lyapunov Functions

29 Jan 2020  ·  Scott B. Lindstrom ·

For many problems, some of which are reviewed in the paper, popular algorithms like Douglas--Rachford (DR), ADMM, and FISTA produce approximating sequences that show signs of spiraling toward the solution. We present a meta-algorithm that exploits such dynamics to potentially enhance performance. The strategy of this meta-algorithm is to iteratively build and minimize surrogates for the Lyapunov function that captures those dynamics. As a first motivating application, we show that for prototypical feasibility problems the circumcentered-reflection method (CRM), subgradient projections, and Newton--Raphson are all describable as gradient-based methods for minimizing Lyapunov functions constructed for DR operators, with the former returning the minimizers of spherical surrogates for the Lyapunov function. As a second motivating application, we introduce a new method that shares these properties but with the added advantages that it: 1) does not rely on subproblems (e.g. reflections) and so may be applied for any operator whose iterates have the spiraling property; 2) provably has the aforementioned Lyapunov properties with few structural assumptions and so is generically suitable for primal/dual implementation; and 3) maps spaces of reduced dimension into themselves whenever the original operator does. This makes possible the first primal/dual implementation of a method that seeks the center of spiraling iterates. We describe this method, and provide a computed example (basis pursuit).

PDF Abstract