Berline-Vergne valuation and generalized permutohedra

15 Oct 2017  ·  Castillo Federico, Liu Fu ·

Generalizing a conjecture by De Loera et al., we conjecture that integral generalized permutohedra all have positive Ehrhart coefficients. Berline and Vergne construct a valuation that assigns values to faces of polytopes, which provides a way to write Ehrhart coefficients of a polytope as positive sums of these values... Based on available results, we pose a stronger conjecture: Berline-Vergne's valuation is always positive on permutohedra, which implies our first conjecture. This article proves that our strong conjecture on Berline-Vergne's valuation is true for dimension up to 6, and is true if we restrict to faces of codimension up to 3. In addition to investigating the positivity conjectures, we study the Berline-Vergne's valuation, and show that it is the unique construction for McMullen's formula used to describe number of lattice points in permutohedra under certain symmetry constraints. We also give an equivalent statement to the strong conjecture in terms of mixed valuations. read more

PDF Abstract
No code implementations yet. Submit your code now