A Converging Lagrangian Curvature Flow in the Space of Oriented Lines

18 Jun 2015  ·  Guilfoyle Brendan, Klingenberg Wilhelm ·

Under mean radius of curvature flow, a closed convex surface in Euclidean space is known to expand exponentially to infinity. In the 3-dimensional case we prove that the oriented normals to the flowing surface converge to the oriented normals of a round sphere whose centre is determined by the initial surface... To prove this we show that the oriented normal lines, considered as a surface in the space of all oriented lines, evolve by a parabolic flow which preserves the Lagrangian condition. Moreover, this flow converges to a holomorphic Lagrangian section, which form the set of oriented lines through a point. The coordinates of this centre point are projections of the support function into the first non-zero eigenspace of the spherical Laplacian and are given by explicit integrals of initial surface data. read more

PDF Abstract
No code implementations yet. Submit your code now


Differential Geometry