A complete characterization of the blow-up solutions to discrete $p$-Laplacian parabolic equations with $q$-reaction under the mixed boundary conditions

10 Jan 2019 Hwang Jaeho

In this paper, we consider discrete $p$-Laplacian parabolic equations with $q$-reaction term under the mixed boundary condition and the initial condition as follows: \begin{equation*} \begin{cases} u_{t}\left(x,t\right) = \Delta_{p,\omega} u\left(x,t\right) +\lambda \left\vert u\left(x,t\right) \right\vert^{q-1} u\left(x,t\right), &\left(x,t\right) \in S \times \left(0,\infty\right), \\ \mu(z)\frac{\partial u}{\partial_{p} n}(z)+\sigma(z)\vert u(z)\vert^{p-2}u(z)=0, &\left(x,t\right) \in \partial S \times \left[0,\infty\right), \\ u\left(x,0\right) = u_{0}(x) \geq 0, &x \in \overline{S}. \end{cases} \end{equation*} where $p>1$, $q>0$, $\lambda>0$ and $\mu,\sigma$ are nonnegative functions on the boundary $\partial S$ of a network $S$, with $\mu(z)+\sigma(z)>0$, $z\in\partial S$... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • ANALYSIS OF PDES