Well-posedness for a system of quadratic derivative nonlinear Schr\"odinger equations with low regularity periodic initial data

16 Jun 2015  ·  Hirayama Hiroyuki ·

We consider the Cauchy problem of a system of quadratic derivative nonlinear Schr\"odinger equations which was introduced by M. Colin and T. Colin (2004) as a model of laser-plasma interaction. For the nonperiodic case, the author proved the small data global well-posedness and the scattering at the scaling critical regularity for $d\geq 2$ when the coefficients of Laplacian satisfy some condition... In the present paper, we prove the well-posedness of the system for the periodic case. In particular, well-posedness is proved at the scaling critical regularity for $d\geq 3$ under some condition for the coefficients of Laplacian. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Analysis of PDEs