The Teichm\"uller and Riemann Moduli Stacks

17 Jun 2018  ·  Meersseman Laurent ·

The aim of this paper is to study the structure of the higher-dimensional Teichm\"uller and Riemann moduli spaces, viewed as stacks over the category of complex manifolds. We first show that the space of complex operators on a smooth manifold admits a foliation transversely modeled on a translation groupoid, a concept that we define here... We then show how to construct explicitly a holonomy groupoid for such a structure and show that in this case its objects and morphisms form a finite-dimensional analytic space and its source and target maps are smooth morphisms. This holonomy data encodes how to glue the local Kuranishi spaces to obtain a groupoid presentation of the Teichm\"uller and Riemann moduli stacks, which can thus be characterized as Artin analytic stacks. This is achieved under the sole condition that the dimension of the automorphism group of each structure is bounded by a fixed integer. read more

PDF Abstract
No code implementations yet. Submit your code now


Complex Variables Algebraic Geometry