The space of coset partitions of $F_n$ and Herzog-Sch\"onheim conjecture

30 Apr 2018 Chouraqui Fabienne

Let $G$ be a group and $H_1$,...,$H_s$ be subgroups of $G$ of indices $d_1$,...,$d_s$ respectively. In 1974, M. Herzog and J. Sch\"onheim conjectured that if $\{H_i\alpha_i\}_{i=1}^{i=s}$, $\alpha_i\in G$, is a coset partition of $G$, then $d_1$,..,$d_s$ cannot be distinct... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • GROUP THEORY
  • ALGEBRAIC TOPOLOGY