The Josefson-Nissenzweig property for locally convex spaces

30 Mar 2020 Banakh Taras Gabriyelyan Saak

We define a locally convex space $E$ to have the $Josefson$-$Nissenzweig$ $property$ (JNP) if the identity map $(E',\sigma(E',E))\to ( E',\beta^\ast(E',E))$ is not sequentially continuous. By the classical Josefson--Nissenzweig theorem, every infinite-dimensional Banach space has the JNP... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • FUNCTIONAL ANALYSIS
  • GENERAL TOPOLOGY