We define a locally convex space $E$ to have the $Josefson$-$Nissenzweig$ $property$ (JNP) if the identity map $(E',\sigma(E',E))\to ( E',\beta^\ast(E',E))$ is not sequentially continuous. By the classical Josefson--Nissenzweig theorem, every infinite-dimensional Banach space has the JNP... (read more)
PDF