We study the Hilbert scheme $\mathrm{Hilb}_d(\mathbb{A}^\infty)$ from an $\mathbb{A}^1$-homotopical viewpoint and obtain applications to algebraic K-theory. We show that the Hilbert scheme $\mathrm{Hilb}_d(\mathbb{A}^\infty)$ is $\mathbb{A}^1$-equivalent to the Grassmannian of $(d-1)$-planes in $\mathbb{A}^\infty$... (read more)

PDF- ALGEBRAIC GEOMETRY

- ALGEBRAIC TOPOLOGY

- K-THEORY AND HOMOLOGY