Let $F(x)$ be an irreducible polynomial with integer coefficients and degree at least 2. For $x\ge z\ge y\ge 2$, denote by $H_F(x, y, z)$ the number of integers $n\le x$ such that $F(n)$ has at least one divisor $d$ with $y<d\le z$... (read more)

PDF- NUMBER THEORY