The delocalized phase of the Anderson Hamiltonian in $1$-d

10 Feb 2021  ·  Laure Dumaz, Cyril Labbé ·

We introduce a random differential operator, that we call the $\mathtt{CS}_\tau$ operator, whose spectrum is given by the $\mbox{Sch}_\tau$ point process introduced by Kritchevski, Valk\'o and Vir\'ag (2012) and whose eigenvectors match with the description provided by Rifkind and Vir\'ag (2018). This operator acts on $\mathbf{R}^2$-valued functions from the interval $[0,1]$ and takes the form: $$ 2 \begin{pmatrix} 0 & -\partial_t \\ \partial_t & 0 \end{pmatrix} + \sqrt{\tau} \begin{pmatrix} d\mathcal{B} + \frac1{\sqrt 2} d\mathcal{W}_1 & \frac1{\sqrt 2} d\mathcal{W}_2\\ \frac1{\sqrt 2} d\mathcal{W}_2 & d\mathcal{B} - \frac1{\sqrt 2} d\mathcal{W}_1\end{pmatrix}\,, $$ where $d\mathcal{B}$, $d\mathcal{W}_1$ and $d\mathcal{W}_2$ are independent white noises. Then, we investigate the high part of the spectrum of the Anderson Hamiltonian $\mathcal{H}_L := -\partial_t^2 + dB$ on the segment $[0,L]$ with white noise potential $dB$, when $L\to\infty$. We show that the operator $\mathcal{H}_L$, recentred around energy levels $E \sim L/\tau$ and unitarily transformed, converges in law as $L\to\infty$ to $\mathtt{CS}_\tau$ in an appropriate sense. This allows to answer a conjecture of Rifkind and Vir\'ag (2018) on the behavior of the eigenvectors of $\mathcal{H}_L$. Our approach also explains how such an operator arises in the limit of $\mathcal{H}_L$. Finally we show that at higher energy levels, the Anderson Hamiltonian matches (asymptotically in $L$) with the unperturbed Laplacian $-\partial_t^2$. In a companion paper, it is shown that at energy levels much smaller than $L$, the spectrum is localized with Poisson statistics: the present paper therefore identifies the delocalized phase of the Anderson Hamiltonian.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Probability Statistical Mechanics Mathematical Physics Mathematical Physics 60H25, 60J60, 60B20