The bv algebra in string topology of classifying spaces

13 Oct 2016 Kuribayashi Katsuhiko LAREMA Menichi Luc LAREMA

For almost any compact connected Lie group $G$ and any field $\mathbb{F}\_p$, we compute the Batalin-Vilkoviskyalgebra $H^{*+\text{dim }G}(LBG;\mathbb{F}\_p)$ on the loop cohomology of the classifying space introduced byChataur and the second author.In particular, if $p$ is odd or $p=0$, this Batalin-Vilkovisky algebra is isomorphicto the Hochschild cohomology $HH^*(H\_*(G),H\_*(G))$. Over $\mathbb{F}\_2$, such isomorphism of Batalin-Vilkovisky algebrasdoes not hold when $G=SO(3)$ or $G=G\_2$...

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • ALGEBRAIC TOPOLOGY
  • GEOMETRIC TOPOLOGY
  • QUANTUM ALGEBRA