Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model

22 Dec 2020  ·  Juan Zhang, Cheng Wang, Steven M. Wise, Zhengru Zhang ·

In this paper, two finite difference numerical schemes are proposed and analyzed for the droplet liquid film model, with a singular Leonard-Jones energy potential involved. Both first and second order accurate temporal algorithms are considered. In the first order scheme, the convex potential and the surface diffusion terms are implicitly, while the concave potential term is updated explicitly. Furthermore, we provide a theoretical justification that this numerical algorithm has a unique solution, such that the positivity is always preserved for the phase variable at a point-wise level, so that a singularity is avoided in the scheme. In fact, the singular nature of the Leonard-Jones potential term around the value of 0 prevents the numerical solution reaching such singular value, so that the positivity structure is always preserved. Moreover, an unconditional energy stability of the numerical scheme is derived, without any restriction for the time step size. In the second order numerical scheme, the BDF temporal stencil is applied, and an alternate convex-concave decomposition is derived, so that the concave part corresponds to a quadratic energy. In turn, the combined Leonard-Jones potential term is treated implicitly, and the concave part the is approximated by a second order Adams-Bashforth explicit extrapolation, and an artificial Douglas-Dupont regularization term is added to ensure the energy stability. The unique solvability and the positivity-preserving property for the second order scheme could be similarly established. In addition, optimal rate convergence analysis is provided for both the first and second order accurate schemes. A few numerical simulation results are also presented, which demonstrate the robustness of the numerical schemes.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Numerical Analysis Numerical Analysis 35A15 (Primary) 12-XX, 12-08 (Secondary) F.2.2; G.2