Motivated by recent applications in rough volatility and regularity structures, notably the notion of singular modelled distribution, we study paths, rough paths and related objects with a quantified singularity at zero. In a pure path setting this allows us to leverage on existing SLE Besov estimates to see that SLE traces takes values in a singular H\"older space, which quantifies a well-known boundary effect in the regime $\kappa < 1$... (read more)
PDF Abstract