Rational maps from punctual Hilbert schemes of K3 surfaces

11 Jun 2016  ·  Lin Hsueh-Yung ·

The purpose of this short note is to study dominant rational maps from punctual Hilbert schemes of length $k>1$ of projective K3 surfaces $S$ containing infinitely many rational curves. Precisely, we prove that their image is necessarily rationally connected if this rational map is not generically finite... As an application, we simplify the proof of C. Voisin's of the fact that symplectic involutions of any projective K3 surface $S$ act trivially on $\mathrm{CH}_0(S)$. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Algebraic Geometry