Ramified covering maps and stability of pulled back bundles

17 Feb 2021  ·  Indranil Biswas, A. J. Parameswaran ·

Let $f:C\rightarrow D$ be a nonconstant separable morphism between irreducible smooth projective curves defined over an algebraically closed field. We say that $f$ is genuinely ramified if ${\mathcal O}_D$ is the maximal semistable subbundle of $f_*{\mathcal O}_C$ (equivalently, the homomorphism of etale fundamental groups is surjective)... We prove that the pullback $f^*E\rightarrow C$ is stable for every stable vector bundle $E$ on $D$ if and only if $f$ is genuinely ramified. read more

PDF Abstract
No code implementations yet. Submit your code now


Algebraic Geometry 14H30, 14H60, 14E20