Quasi-Hamiltonian reduction via classical Chern-Simons theory

17 Aug 2015  ·  Safronov Pavel ·

This paper puts the theory of quasi-Hamiltonian reduction in the framework of shifted symplectic structures developed by Pantev, To\"{e}n, Vaqui\'{e} and Vezzosi. We compute the symplectic structures on mapping stacks and show how the AKSZ topological field theory defined by Calaque allows one to neatly package the constructions used in quasi-Hamiltonian reduction... Finally, we explain how a prequantization of character stacks can be obtained purely locally. read more

PDF Abstract
No code implementations yet. Submit your code now


Algebraic Geometry Mathematical Physics Differential Geometry Mathematical Physics