Quadratic residues and related permutations concerning cyclotomic fields
20 Aug 2019
•
Wu Hai-Liang
Let $p$ be an odd prime. For any $p$-adic integer $a$ we let $\overline{a}$
denote the unique integer $x$ with $-p/2<x<p/2$ and $x-a$ divisible by $p$...In
this paper we study some permutations involving quadratic residues modulo $p$. For instance, we consider the following three sequences. \begin{align*} &A_0:
\overline{1^2},\ \overline{2^2},\ \cdots,\ \overline{((p-1)/2)^2},\\ &A_1:
\overline{a_1},\ \overline{a_2},\ \cdots,\ \overline{a_{(p-1)/2}},\\ &A_2:
\overline{g^2},\ \overline{g^4},\ \cdots,\ \overline{g^{p-1}}, \end{align*}
where $g\in\Z$ is a primitive root modulo $p$ and $1\le
a_1<a_2<\cdots<a_{(p-1)/2}\le p-1$ are all quadratic residues modulo $p$. Obviously $A_i$ is a permutation of $A_j$ and we call this permutation
$\sigma_{i,j}$. Sun obtained the sign of $\sigma_{0,1}$ when $p\equiv 3\pmod4$. In this paper we give the sign of $\sigma_{0,1}$ and determine the sign
$\sigma_{0,2}$ when $p\equiv 1\pmod 4$.(read more)