Quadratic residues and quartic residues modulo primes

10 Sep 2020  ·  Sun Zhi-Wei ·

In this paper we study some products related to quadratic residues and quartic residues modulo primes. Let $p$ be an odd prime and let $A$ be any integer... We mainly determine completely the product $$f_p(A):=\prod_{1\le i,j\le(p-1)/2\atop p\nmid i^2-Aij-j^2}(i^2-Aij-j^2)$$ modulo $p$; for example, if $p\equiv1\pmod4$ then $$f_p(A)\equiv\begin{cases}-(A^2+4)^{(p-1)/4}\pmod p&\text{if}\ (\frac{A^2+4}p)=1, \\(-A^2-4)^{(p-1)/4}\pmod p&\text{if}\ (\frac{A^2+4}p)=-1,\end{cases}$$ where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also determine $$\prod^{(p-1)/2}_{i,j=1\atop p\nmid 2i^2+5ij+2j^2}\left(2i^2+5ij+2j^2\right) \ \text{and}\ \prod^{(p-1)/2}_{i,j=1\atop p\nmid 2i^2-5ij+2j^2}\left(2i^2-5ij+2j^2\right)$$ modulo $p$. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Number Theory