Proof of some supercongruences via the Wilf-Zeilberger method

29 Sep 2019 Mao Guo-Shuai

In this paper, we prove some supercongruences via the Wilf-Zeilberger method. For instance, for any odd prime $p$ and positive integer $r$ and $\delta\in\{1,2\}$, we have \begin{align*} \sum_{n=0}^{(p^r-1)/\delta} \frac{\left(\frac12\right)^5_n}{n!^5}(10n^2+6n+1)(-4)^n &\equiv\begin{cases}p^{2r}\ \pmod{p^{r+4}} &\tt{if}\ r\leq4, \\0\ \pmod{p^{r+4}} &\tt{if}\ r \geq5... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • NUMBER THEORY
  • COMBINATORICS