Projective embedding of log Riemann surfaces and K-stability

25 Sep 2017  ·  Sun Jingzhou, Sun Song ·

Given a smooth polarized Riemann surface (X, L) endowed with a hyperbolic metric $\omega$ with cusp singularities along a divisor D, we show the L^2 projective embedding of (X, D) defined by L^k is asymptotically almost balanced in a weighted sense. The proof depends on sufficiently precise understanding of the behavior of the Bergman kernel in three regions, with the most crucial one being the neck region around D. This is the first step towards understanding the algebro-geometric stability of extremal K\"ahler metrics with singularities...

PDF Abstract
No code implementations yet. Submit your code now


Differential Geometry Algebraic Geometry Complex Variables