Projections over Quantum Homogeneous Odd-dimensional Spheres

24 May 2019 Sheu Albert Jeu-Liang

We give a complete classification of isomorphism classes of finitely generated projective modules, or equivalently, unitary equivalence classes of projections, over the C*-algebra $C\left( \mathbb{S}_{q}^{2n+1}\right) $ of the quantum homogeneous sphere $\mathbb{S}_{q}^{2n+1}$. Then we explicitly identify as concrete elementary projections the quantum line bundles $L_{k}$ over the quantum complex projective space $\mathbb{C}P_{q}^{n}$ associated with the quantum Hopf principal $U\left( 1\right) $-bundle $\mathbb{S} _{q}^{2n+1}\rightarrow\mathbb{C}P_{q}^{n}$...

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • OPERATOR ALGEBRAS