Primitive values of rational functions at primitive elements of a finite field

28 Sep 2019 Cohen Stephen D. Sharma Hariom Sharma Rajendra

Given a prime power $q$ and an integer $n\geq2$, we establish a sufficient condition for the existence of a primitive pair $(\alpha,f(\alpha))$ where $\alpha \in \mathbb{F}_q$ and $f(x) \in \mathbb{F}_q(x)$ is a rational function of degree $n$. (Here $f=f_1/f_2$, where $f_1, f_2$ are coprime polynomials of degree $n_1,n_2$, respectively, and $n_1+n_2=n$.).. (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • NUMBER THEORY
  • COMMUTATIVE ALGEBRA