On the sunflower bound for $k$-spaces, pairwise intersecting in a point

14 Aug 2020  ·  Aart Blokhuis, Maarten De Boeck, Jozefien D'haeseleer ·

A $t$-intersecting constant dimension subspace code $C$ is a set of $k$-dimensional subspaces in a projective space PG(n,q), where distinct subspaces intersect in a $t$-dimensional subspace. A classical example of such a code is the sunflower, where all subspaces pass through the same $t$-space. The sunflower bound states that such a code is a sunflower if $|C| > \left( \frac {q^{k + 1} - q^{t + 1}}{q - 1} \right)^2 + \left( \frac {q^{k + 1} - q^{t + 1}}{q - 1} \right) + 1$. In this article we will look at the case $t=0$ and we will improve this bound for $q\geq 9$: a set $\mathcal{S}$ of $k$-spaces in PG(n,q), $q\geq 9$, pairwise intersecting in a point is a sunflower if $|\mathcal{S}|> \left(\frac{2}{\sqrt[6]{q}}+\frac{4}{\sqrt[3]{q}}-\frac{5}{\sqrt{q}}\right)\left(\frac {q^{k + 1} - 1}{q - 1}\right)^2$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Combinatorics 51E20, 05B25, 52E14, 51E23, 51E30