On the speed rate of convergence of solutions to conservation laws with nonlinear diffusions

30 Jun 2019  ·  Folino Raffaele, Strani Marta ·

In this paper we analyze the long-time behavior of solutions to conservation laws with nonlinear diffusion terms of different types: saturating dissipation (monotone and non monotone) and singular nonlinear diffusions are considered. In particular, the cases of mean curvature-type diffusions both in the Euclidean space and in Lorentz-Minkowski space enter in our framework... After dealing with existence and stability of monotone steady states in a bounded interval of the real line with Dirichlet boundary conditions, we discuss the speed rate of convergence to the asymptotic limit as $t\to+\infty$. Finally, in the particular case of a Burgers flux function, we show that the solutions exhibit the phenomenon of metastability. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Analysis of PDEs