On Generalized Carmichael Numbers

5 Mar 2021  ·  Yongyi Chen, Tae Kyu Kim ·

Given an integer $k$, define $C_k$ as the set of integers $n > \max(k,0)$ such that $a^{n-k+1} \equiv a \pmod{n}$ holds for all integers $a$. We establish various multiplicative properties of the elements in $C_k$ and give a sufficient condition for the infinitude of $C_k$. Moreover, we prove that there are finitely many elements in $C_k$ with one and two prime factors if and only if $k>0$ and $k$ is prime. In addition, if all but two prime factors of $n \in C_k$ are fixed, then there are finitely many elements in $C_k$, excluding certain infinite families of $n$. We also give conjectures about the growth rate of $C_k$ with numerical evidence. We explore a similar question when both $a$ and $k$ are fixed and prove that for fixed integers $a \geq 2$ and $k$, there are infinitely many integers $n$ such that $a^{n-k} \equiv 1 \pmod{n}$ if and only if $(k,a) \neq (0,2)$ by building off the work of Kiss and Phong. Finally, we discuss the multiplicative properties of positive integers $n$ such that Carmichael function $\lambda(n)$ divides $n-k$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Number Theory 11N25