Non-linear $\ast$-Jordan triple derivation on prime $\ast$-algebras

11 Nov 2019 Darvish Vahid Nouri Mojtaba Razeghi Mehran Taghavi Ali

Let $\mathcal{A}$ be a prime $\ast$-algebra and $\Phi$ preserves triple $\ast$-Jordan derivation on $\mathcal{A}$, that is, for every $A,B \in \mathcal{A}$, $$\Phi(A\diamond B \diamond C)=\Phi(A)\diamond B\diamond C+A\diamond \Phi(B)\diamond C+A\diamond B\diamond \Phi(C)$$ where $A\diamond B = AB + BA^{\ast}$ then $\Phi$ is additive. Moreover, if $\Phi(\alpha I)$ is self-adjoint for $\alpha\in\{1,i\}$ then $\Phi$ is a $\ast$-derivation...

PDF Abstract
No code implementations yet. Submit your code now