Nodal area distribution for arithmetic random waves

25 Aug 2017  ·  Cammarota Valentina ·

We obtain the limiting distribution of the nodal area of random Gaussian Laplace eigenfunctions on $\mathbb{T}^3= \mathbb{R}^3/ \mathbb{Z}^3$ ($3$-dimensional 'arithmetic random waves'). We prove that, as the multiplicity of the eigenspace goes to infinity, the nodal area converges to a universal, non-Gaussian, distribution... Universality follows from the equidistribution of lattice points on the sphere. Our arguments rely on the Wiener chaos expansion of the nodal area: we show that, analogous to (Marinucci, Peccati, Rossi and Wigman, 2016), the fluctuations are dominated by the fourth-order chaotic component. The proof builds upon recent results in (Benatar and Maffiucci, 2017) that establish an upper bound for the number of non-degenerate correlations of lattice points on the sphere. We finally discuss higher-dimensional extensions of our result. read more

PDF Abstract
No code implementations yet. Submit your code now