Neural Parametric Fokker-Planck Equations

26 Feb 2020  ·  Shu Liu, Wuchen Li, Hongyuan Zha, Haomin Zhou ·

In this paper, we develop and analyze numerical methods for high dimensional Fokker-Planck equations by leveraging generative models from deep learning. Our starting point is a formulation of the Fokker-Planck equation as a system of ordinary differential equations (ODEs) on finite-dimensional parameter space with the parameters inherited from generative models such as normalizing flows. We call such ODEs neural parametric Fokker-Planck equations. The fact that the Fokker-Planck equation can be viewed as the $L^2$-Wasserstein gradient flow of Kullback-Leibler (KL) divergence allows us to derive the ODEs as the constrained $L^2$-Wasserstein gradient flow of KL divergence on the set of probability densities generated by neural networks. For numerical computation, we design a variational semi-implicit scheme for the time discretization of the proposed ODE. Such an algorithm is sampling-based, which can readily handle the Fokker-Planck equations in higher dimensional spaces. Moreover, we also establish bounds for the asymptotic convergence analysis of the neural parametric Fokker-Planck equation as well as the error analysis for both the continuous and discrete versions. Several numerical examples are provided to illustrate the performance of the proposed algorithms and analysis.

PDF Abstract