Minimal elements for the limit weak order on affine Weyl groups
The limit weak order on an affine Weyl group was introduced by Lam and Pylyavskyy in their study of total positivity for loop groups. They showed that in the case of the affine symmetric group the minimal elements of this poset coincide with the infinite fully commutative reduced words and with infinite powers of Coxeter elements. We answer several open problems raised there by classifying minimal elements in all affine types and relating these elements to the classes of fully commutative and Coxeter elements. Interestingly, the infinite fully commutative elements correspond to the minuscule and cominuscule nodes of the Dynkin diagram, while the infinite Coxeter elements correspond to a single node, which we call the heavy node, in all affine types other than type $A$.
PDF Abstract