Localization crossover for the continuous Anderson Hamiltonian in $1$-d

18 Feb 2021  ·  Laure Dumaz, Cyril Labbé ·

We investigate the behavior of the spectrum of the continuous Anderson Hamiltonian $\mathcal{H}_L$, with white noise potential, on a segment whose size $L$ is sent to infinity. We zoom around energy levels $E$ either of order $1$ (Bulk regime) or of order $1\ll E \ll L$ (Crossover regime). We show that the point process of (appropriately rescaled) eigenvalues and centers of mass converge to a Poisson point process. We also prove exponential localization of the eigenfunctions at an explicit rate. In addition, we show that the eigenfunctions converge to well-identified limits: in the Crossover regime, these limits are universal. Combined with the results of our companion paper arXiv:2102.05393, this identifies completely the transition between the localized and delocalized phases of the spectrum of $\mathcal{H}_L$. The two main technical challenges are the proof of a two-points or Minami estimate, as well as an estimate on the convergence to equilibrium of a hypoelliptic diffusion, the proof of which relies on Malliavin calculus and the theory of hypocoercivity.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Probability Statistical Mechanics Mathematical Physics Analysis of PDEs Mathematical Physics